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Abstract

- Han Hao?3 - Kevin P. Rosales?* - Andrew R. A. Conway?3

Complex span tasks are perhaps the most widely used paradigm to measure working memory capacity (WMC). Researchers
assume that all types of complex span tasks assess domain-general WM. However, most research supporting this claim comes
from factor analysis approaches that do not examine task performance at the item level, thus not allowing comparison of the
characteristics of verbal and spatial complex span tasks. Item response theory (IRT) can help determine the extent to which dif-
ferent complex span tasks assess domain-general WM. In the current study, spatial and verbal complex span tasks were examined
using IRT. The results revealed differences between verbal and spatial tasks in terms of item difficulty and block difficulty, and
showed that most subjects with below-average ability were able to answer most items correctly across all tasks. In line with previ-
ous research, the findings suggest that examining domain-general WM by using only one task might elicit skewed scores based
on task domain. Further, visuospatial complex span tasks should be prioritized as a measure of WMC if resources are limited.

Keywords Item response theory (IRT) - Complex span tasks - Working memory capacity

Working memory (WM) is a limited capacity system of cog-
nitive processes that can maintain and manipulate temporar-
ily activated mental representations required for complex
cognition (Baddeley & Hitch, 1974). WM plays an important
role in language comprehension, reasoning, planning, and
problem-solving, making it a core component of numerous
general theories and models of cognition (Anderson & Leb-
iere, 1998; Cowan, 1995; Oberauer, 2002, 2003, 2019).
While all humans have a WM, individual differences in
the capacity to hold and manipulate information in WM vary.
Over the years, research has found that individual differences
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in WM capacity (WMC) are associated with overall cognitive
ability (Kane et al., 2001; Kovacs & Conway, 2016) and serve
as a strong predictor of a broad range of outcomes, including
academic achievement (Alloway & Alloway, 2010; Gathercole
et al., 2003), reading comprehension (Engle et al., 1992; Dane-
man & Carpenter, 1980; McVay & Kane, 2012), mathemati-
cal ability (Ramirez et al., 2013; Turner & Engle, 1989, and
multi-tasking (Redick et al., 2016; 2012), among others. For
this reason, WMC is often measured in psychological research.

Multiple cognitive tasks to measure WMC are readily
available and have become popular tools to assess individ-
ual differences in cognitive ability (Foster et al., 2015). For
example, complex span tasks are the most commonly used
measures of WMC; they require both simultaneously storing
and processing information, thus assessing both key dimen-
sions of WMC (Conway et al., 2005). While tasks of WMC,
such as complex span tasks, were originally designed to assess
domain-general WM by averaging responses across multiple
domain-specific tasks, it has become increasingly common
for researchers to use only one task to measure WMC when
resources are limited (Foster et al., 2015). However, to ensure
that domain-general WM is effectively measured, it is impor-
tant to understand whether there are critical differences among
types of complex span task, as well as in the degree of domain
generality that the tasks assess individually.
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Psychometric studies examining complex span tasks have
focused on using factor analysis approaches to explore the
degree of common variance that is captured by a latent con-
struct (i.e., WMC). This extensive psychometric work has
shown that complex span tasks overall assess domain-gen-
eral WM. However, recent research has found that some of
the complex span tasks present domain-specific differences
(Foster et al., 2015; Draheim et al., 2018). To examine where
these variations arise and how they might affect the interpre-
tation of complex span scores for domain-general WM, item
response theory (IRT) can be used as a technique to examine
each item of the tasks to produce a more accurate depiction
of their underlying traits. IRT can estimate subject scores for
a given item in a test, providing more information about each
test item. This can help estimate parameters such as subject’s
ability level, item difficulty, and discrimination without con-
sidering the items as a whole, but rather treating them inde-
pendently, as opposed to traditional methods (Embretson,
1996). Further, compared to classic test theory, IRT relies
on different statistical assumptions that may reflect different
theoretical implications in psychometric and individual differ-
ences research. For example, IRT models assume non-linear
associations between the items and the estimated latent con-
struct. In addition, measurement errors vary across trait levels,
while in classic test theory, the errors of measurement are
constant for all scores. Finally, compared to total raw scores,
trait estimates from IRT are optimal scales of individual dif-
ferences and have better scaling properties (Reise et al., 2005).

Complex span tasks

The most commonly used set of tasks to measure WMC are
known as “complex span” (e.g., reading span, operation span,
symmetry span, and rotation span; see Conway et al., 2005).
Complex span tasks are widely used because they consistently
exhibit good reliability and strong predictive validity (Conway
et al., 2005), thus constituting a solid theoretical measurement
of working memory as a multicomponent system based on the
original work of Baddeley & Hitch, 1974). The tasks origi-
nated in individual differences research, mainly in the field of
cognitive psychology, but they have become widespread in
other areas of psychology as well, including social, industrial/
organizational, developmental, education, and clinical psychol-
ogy (e.g., Allen et al., 2015; Christopher & MacDonald, 2005;
Redick, Heitz, & Engle, 2007). Complex span tasks require
storage and simultaneous processing of information (some-
times referred to as storage & processing tasks or maintenance
& manipulation tasks) and were designed as an alternative to
simple span tasks, such as digit span, which only require stor-
age of information. On the one hand, in a simple span task, a
list of stimuli (e.g., digits) is presented, and at the end of the
list, the subject is prompted to recall the stimuli in the serial
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order in which they were presented. In contrast, in a complex
span task, the presentation of each stimulus is preceded by a
resource-demanding secondary task (the processing compo-
nent), such as solving a math problem. For example, in the
Operation span, subjects are presented with a list of interleaved
letters (i.e., stimuli) shown one at a time on the screen while
solving simple math equations (i.e., processing component)
(e.g., Is (2x3) -1 =57). The subject is instructed to remember
the letters for later recall and verify each equation by respond-
ing true or false. After each list of letters and math equations
(i.e., item), subjects are prompted to recall the letters in serial
order (see Fig. 1). The number of letters accurately recalled is
considered to be an indicator of WMC. In other words, WMC
is the amount of information that can be maintained in the face
of concurrent processing.

Thus, in complex span tasks, an “item” is defined as the
entire set of to-be-remembered “storage” stimuli and the
interleaved “processing” stimuli. In other words, a list of
letters and a list of equations in the operation span form
an item. In addition, in a given complex span task, the
storage and processing stimuli belong to the same domain.
That is, in verbal complex span tasks, both the storage and
processing stimuli are verbal, while in spatial complex span
tasks, both the storage and processing stimuli are spatial.
Complex span tasks traditionally consist of three blocks',
with item sizes ranging from 2 to 5 (visuospatial) or 3 to
7 (verbal) storage and processing stimuli (see Appendix
for further details). There are several procedures to score
responses to complex span tasks, but the most common
is the partial-credit load (PCL) method (Conway et al.,
2005). PCL is the sum of correctly recalled storage stimuli
from all items, regardless of whether each storage stimulus
in a to-be-remembered item is perfectly recalled or not.
Therefore, total scores are weighted based on item size
(i.e., longer items contribute more to the total score than
shorter ones). For each item, the maximum score equals
the number of storage stimuli presented in that item while
the minimum score is 0. For example, in operation span,
subjects complete 12 items of 2-5 to-be-recalled storage
stimuli each. Following this, a person could obtain the
following scores: 1 + .5+ 1 + 14+ I+ 1+ .75+ .5+ .75 +
.8 + .8 + .8, that is, 1 for an entirely correctly recalled item
and partial credit for an item that was not fully recalled
(instead of a 0). Thus, this person’s span score would be
9.9/12 or .83. This scoring method has been shown to be a
reliable measure of WMC (Conway et al., 2005).

! Although see Foster et al. (2015) and Oswald et al. (2015) for a
new version of the tasks the tasks consisting of fewer blocks and dif-
ferent set sizes that are increasingly being adopted by working mem-
ory researchers.
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Operation Span
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(1x2) +1= ?
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Symmetry Span

Select the letters in the order presented.
F H J
K L N
P Q R
H RN s T Y
Blank
Clear Enter

Is this symmetrical

Select the squares in the order
presented.

Fig.1 Example of complex span tasks. In both tasks, subjects are
first shown a processing stimulus (i.e., solving a mathematical prob-
lem or deciding whether a pattern is symmetrical), followed by a to-
be-remembered storage stimulus (i.e., a letter or the location of a red

Domain-general ability

As mentioned, complex span tasks are thought to measure pri-
marily the domain-general component of WM (Harrison et al.,
2014). This is supported by individual differences research
showing that WMC is largely a domain-general cognitive
ability (Engle, 2002; Engle & Kane, 2004; Engle, Nations, &
Cantor, 1990; Harrison et al., 2014, Cantor et al., 1991). For
example, in an influential study on the domain-generality of
WMC, Kane et al. (2004) examined the relationship between
verbal and visuospatial complex span tasks, verbal and visu-
ospatial simple span tasks, and tests of fluid intelligence. The
researchers found that complex span tasks loaded on a single
factor, whereas the simple span tasks loaded on two separate
factors (verbal and spatial), and a latent factor reflecting the
complex span tasks was a strong predictor of general fluid
intelligence, consistent with previous studies (Engle et al.,
1999a; Conway et al., 2003; Colom et al., 2005; Kyllonen &
Christal, 1990; Unsworth et al., 2014; for a review see Kane
et al., 2005). These findings support the view that the shared
variance between complex span tasks and fluid intelligence
reflects a domain-general cognitive ability. Further evidence

Blank
Clear Enter

square in a grid). At the end of a list of storage and processing stim-
uli (i.e., item), subjects must enter all the to-be-remembered storage
stimuli they were presented in order of appearance

for the domain-generality of complex spans comes from neu-
roimaging studies of WM. Chein et al. (2011) conducted an
fMRI experiment to examine task-related neural activity as
subjects performed verbal and spatial complex and simple
span tasks. The results of the study revealed greater activity in
the fronto-parietal network during verbal complex span com-
pared to simple span and during spatial complex span com-
pared to simple span. In addition, the researchers also found
significant overlap in neural activity associated with complex
verbal and complex spatial span. Overall, the findings suggest
that both types of complex span tasks tap general processes.

The evidence reported above suggests that complex
span tasks are more representative of domain-general WM
than simple span tasks (Conway et al., 2002; Cowan et al.,
2005; Kane, Hambrick, Conway, 2005; Engle, Kane, &
Tuholski, 1999a,b; Engle, Tuholski, Laughlin, & Conway,
1999c; Unsworth, Heitz, & Engle, 2005). However, it is
important to highlight evidence that shows the contrary.
More recently, Wilhelm et al. (2013) tested different fami-
lies of working memory tasks to understand whether these
tasks shared the same domain-general variance. Their find-
ings show that working memory may not be completely
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reflective of a domain-general component. Rather, work-
ing memory also reflects bindings; namely, the ability
to update and maintain information. Other evidence has
also shown that working memory may reflect storage as
opposed to updating or other domain-general processes
as originally thought (Frischkorn et al., 2022). Taken
together, these findings challenge the view that working
memory is a purely domain-general ability. Regardless of
the mixed evidence reviewed above, most of these psycho-
metric studies utilize factor analysis approaches to exam-
ine variance shared by complex span tasks. Item response
theory (IRT) can instead examine whether individual
items in the tasks (in which stimuli vary) present vari-
able response patterns that cannot otherwise be observed.
To establish that all complex span tasks assess domain-
general WM as observed in factor analysis studies, homo-
geneity across tasks response patterns should be observed.

Domain-specific ability

The available evidence indicates that complex span tasks
largely reflect a domain-general ability while simple span
tasks are more domain-specific. However, research has also
shown some differences in complex span task performance
across domains. For example, subjects tend to perform better
on verbal tasks compared to visuospatial tasks. Specifically,
when examining performance at the item-level, research
has shown that responses to operation span tend to exhibit
higher accuracy in later blocks compared to earlier blocks
(Draheim, Harrison, Embretson & Engle, 2018), which may
reflect a practice or strategy effect. In fact, results from Kane
et al. (2004) showed that a WMC factor based on visuospa-
tial complex span tasks was a stronger predictor of general
fluid intelligence than a WMC factor based on verbal com-
plex span tasks. This raises the concern that verbal complex
span tasks may reflect verbal ability to a greater extent than
visuospatial complex span tasks reflect visuospatial ability. It
is worth noting that the general view that WMC (in particu-
lar verbal tasks) reflects domain-specific abilities to a greater
extent is part of a larger debate; some scholars support a
view in which working memory is thought to be driven by
multiple specialized domain-specific processes (Vergauwe
et al., 2022; Colheart, 1999; Morey et al., 2019), while other
researchers instead propose that working memory is influ-
enced by single domain-general resources (Cowan, 1999).
There is also research indicating that there are developmen-
tal differences in the relationship between general and domain-
specific WM in young children. For example, Alloway, Gath-
ercole, & Pickering (2006) found that young children use more
executive resources, such as controlled attention when com-
pleting visuospatial tasks than when completing verbal tasks,
suggesting that young children draw on previously known
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information to complete verbal tasks. Similarly, Demir, Prado
and Booth (2014) found that children with higher verbal WM
tended to present activity in the left temporal cortex, whereas
higher spatial ability was related to activity in the right pari-
etal cortex when completing the same arithmetic task. Finally,
Mackintosh and Bennett (2003) found that verbal WM and
spatial WM formed two related but separate factors using con-
firmatory factor analysis, leading the researchers to conclude
that WM is likely in part domain-specific.

In addition to evidence from developmental research,
there seem to be domain-specific variations in WM training
paradigms. Specifically, some studies have found that sub-
jects present training-induced changes only when the train-
ing task and the transfer task are both verbal, as opposed to
nonverbal tasks (Gathercole, Dunning, Holmes, & Norris,
2019; Holmes, Woolgar, Hampshire, & Gathercole, 2019).
However, other studies have shown that visuospatial skills
can be trained (Foster et al., 2017; Uttal et al., 2013), sug-
gesting that perhaps verbal and visuospatial WM require
different approaches to observe training gains. It is unclear
where such differences between verbal and spatial tasks
originate, but it is possible that they are related to the fact
that verbal tasks may facilitate the use of rehearsal or other
practice strategies (Turley-Ames & Whitfield, 2003).

In this context, item response theory (IRT) is a largely unex-
plored approach in the area of working memory that could
help understand differences between verbal and spatial com-
plex span tasks. IRT models, especially those with confirma-
tory parameters, can represent cognitive theory variables and
describe corresponding characteristics of the items (Embretson
& McCollam, 2000a, 2000b). Recent research shows that item-
level responses can help explain variations among different
types of complex span tasks (Draheim et al., 2018), indicating
that observing item-level trends can be informative of the pro-
cesses used to respond to different types of tasks.

Item response theory

Item response theory (IRT) is a psychometric assessment
and modeling technique that estimates a respondent’s stand-
ing on underlying attributes, or latent traits, by creating a
corresponding psychometric estimation based on maximized
information from individual items in a test (Brown & Crou-
dace, 2015), independently of the test. Both IRT and tradi-
tional methods like classical test theory are used to develop
and implement multi-item scales to assess unobservable
constructs or latent variables. For this, IRT estimates the
probability that a subject’s response to a given item falls
within a specific category, while in classical test theory,
the focus is to measure a person’s average response levels
(Embretson & Reise, 2013). Thus, while classical test theory
primarily estimates subjects’ scores for an entire test, IRT
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incorporates more information about each individual item
of a test to produce a more accurate depiction of the target
traits, allowing a clearer investigation of a subject’s ability
level, item difficulty, and discrimination. As opposed to clas-
sical test theory, IRT items are treated independently from
one another. For example, the difficulty of an item in IRT
is relative to the ability level of an individual, thus the test
score of a population in IRT are a mean value of the indi-
vidual’s values, whereas in classical test theory the single
value applies to all trait levels. Similarly, in classical test
theory, comparing across tests scores requires having equal
tests forms (i.e., parallelism), while in IRT comparing across
tests forms is acceptable when test difficulty varies across
individuals. In terms of parameter estimation, both classical
test theory and IRT estimate difficulty and discrimination,
but they do so in different ways. Classical test theory often
calculates difficulty as a measure of proportion of correct
responses and calculates discrimination as point-biserial
correlations. In IRT, difficulty (or b) is estimated as the
probability of responding correctly to an item based on a
subject’s ability level and discrimination (or a) is estimated
as the steepness of an item’s mean score; importantly, both
parameters are examined on a latent scale. Finally, while
classical test theory calculates the position of an item on the
latent trait continuum by comparing test scores with scores
of a reference group, in IRT the position is estimated by
comparing the distance between items on the ability scale
(see Embretson, 1996 for a complete review).

IRT also differs from factor analysis approaches in that
the goal of factor analysis is to estimate whether variance
shared among scored tasks is better represented by a latent
construct that represents a given ability. However, it does not
provide information regarding item-level data as IRT models
do. In other words, IRT models evaluate how well individu-
als perform, how well assessments work, and how well indi-
vidual items in assessments work in the same framework.
For these reasons, IRT allows for a specific investigation at
the item and individual level, which provides detailed exami-
nation of different aspect of test items across a range of items
which can provide information about complex span tasks
that has been underexplored in the past.

As mentioned, in most IRT analyses, two types of item
parameters are commonly modeled and examined: item diffi-
culty (f) and item discrimination («). Item difficulty is equal
to an estimated ability level (f) in which the probability of
getting that item correct is the same as getting it incorrect.
In other words, a subject with an average ability level is
estimated to have a 50% chance of responding correctly to an
item of difficulty 0. Item discrimination describes how accu-
rately a given item can differentiate individuals based on
ability level. For this purpose, the slope of the item charac-
teristic curve is used to assess whether a specific item mean
score has either a steeper curve (i.e., high value) or whether

the item has a wider curve (i.e., low value) and, therefore,
cannot adequately differentiate based on ability level.

In terms of WMC research, Draheim et al. (2018) used
IRT to analyze the difficulty and discrimination parameters
of three complex span tasks (i.e., rotation span, operation
span, and symmetry span). They found that, generally, items
in later blocks presented lower difficulty estimates in two of
the complex span tasks, while items in earlier blocks showed
higher difficulty estimates, indicating that overall subjects
responded more accurately to later blocks than earlier
blocks. The authors theorized that subjects might have used
a strategy to respond to some of these items, thus impacting
complex span scores differently based on the item exposure.
This suggests that some complex span tasks may be more
prone to task-specific strategies.

The current study builds upon these findings by explor-
ing response differences to item-level data of two spatial
complex span tasks and two verbal complex span tasks
extracted from different samples. The goal of the study is
to understand whether there are relevant differences at the
item level in verbal compared to visuospatial complex span
tasks. Specifically, whether item-level data supports findings
from factor analysis showing that complex span tasks form a
uniform domain-general WM construct. We expected IRT to
reveal that longer items are more difficult than shorter items
for subjects of average ability (because correctly responding
to harder items requires more WMC), and more discriminat-
ing of subjects’ ability across tasks, supporting the hypoth-
esis that complex span tasks tap a domain-general construct.
Based on previous research (Draheim et al., 2018), we also
expected to find some differences in difficulty based on block
presentation (first vs. last). Critically, by studying the item-
level characteristics of the tasks, we expected to identify
sources of variation among complex span tasks of different
domains that have been reported in the literature with the
goal of understanding exactly what complex span scores
represent for the underlying mechanisms of WM.

Method

This study was not pre-registered. Data and scripts for these
analyses can be found at https://osf.io/bhw87/.

Subjects

The first sample (N = 585) was comprised of subjects from
the Georgia Institute of Technology in Atlanta, Georgia,
who completed the operation span task and the symmetry
span task, as well as other measures. These data are publicly
available at https://doi.org/10.1037/pas0000444.supp. The
second sample (N = 261) was comprised of subjects from
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Claremont Graduate University and members of the com-
munity in Claremont, California who completed the reading
span task and the rotation span task. Data from this sample
was collected as part of a previous study that was deemed
exempted from Institutional Review Board approval at
Claremont Graduate University. All subjects indicated hav-
ing normal or corrected-to-normal vision.

Measures

Complex span tasks WMC was assessed using four com-
plex span tasks: operation span, symmetry span, reading
span, and rotation span. These tasks are designed to tax
both the processing and storage components of WM. Each
task consists of multiple items and each item has a varying
number of alternative processing and storage stimuli where
the processing component is always followed by a storage
component. In the processing component, subjects make
judgements about a stimulus and in the storage component,
subjects memorize a stimulus. At the end of each item, sub-
jects must recall the stimuli presented in the storage com-
ponent. Subjects complete a total of 12 (visuospatial) or 15
(verbal) items in each task distributed across three consecu-
tive blocks. Each block includes one item of each set size
and item sizes vary between 2-5 (visuospatial) and 3-7 (ver-
bal) (see Appendix for further details). Responses are scored
and correspond to the item score. (p.13)

In this study, a partial-credit load (PCL) scoring proce-
dure was used to assess subjects’ scores (see Conway et al.,
2005). As mentioned, PCL is the sum of correctly recalled
storage stimuli from all items, regardless of whether they
are perfectly recalled or not. Item scores are weighted based
on item size (longer items contribute more to the total score
than shorter ones), and partially correct items are scored
based on the proportion of correctly responded stimuli
in each item. Items scores range from 0 to the number of
stimuli presented on a given item. All tasks were automated
using E-prime software. Stimuli were presented on a com-
puter screen and responses were collected through mouse
click.

Operation span For each item in the task, the processing
component consisted of a mathematical equation (e.g.,
“(2x2) +1=5") that was followed by the storage component,
a letter. For each set of processing and storage stimuli, sub-
jects had to judge whether the mathematical equation was
correct and then memorize the letter. A total of 15 items
were presented across three blocks, and item sizes varied
from 3 to 7 sets of stimuli. Each item size was randomly
presented once in each of the three blocks. The subject’s
partial credit score for this task ranges from O to 75.
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Symmetry span For each item, the processing component
consisted of a figure that was followed by the storage com-
ponent, a random colored cell in a 4x4 grid. Subjects had to
judge whether the figure was symmetrical and then memo-
rize the position of the colored cell in the 4x4 grid. There
were 12 items presented across three blocks, with item sizes
varying from 2 to 5 sets of stimuli. Each item size was also
randomly presented once in each of the three blocks. The
subject’s partial credit score for this task ranges from 0 to 42.

Reading span For each item, the processing component was
a sentence followed by the storage component, a random
letter. For each set stimuli, subjects had to judge whether
the sentences were sensical and then memorize the letters.
Item sizes varied from 3 to 7 displays. In total, there were
15 items with stimulus sizes ranging from 3 to 7 presented
across three blocks. Each item size was randomly presented
once in each of the three blocks. The subject’s partial credit
score for this task ranges from O to 75.

Rotation span In this task, the processing component con-
sisted of a rotated letter that was followed by the storage
component, a unidirectional arrow. The arrows had eight
possible directions and two possible sizes. For each stimuli
set, subjects had to judge whether the rotated letter was pre-
sented normally (e.g., R) as opposed to horizontally flipped
(e.g., d), and then memorize the direction and size of the
arrows. Item sizes varied from 2 to 5 displays for a total of
12 items presented across three blocks and each item size
was randomly presented at least once in each block. The
subject’s partial credit score for this task ranges from O to 42.

Analyses

Although multidimensional approaches to IRT are available,
in the current paper we retained the assumption of unidimen-
sionality for all estimated IRT models, and therefore it was
assumed that each of the span tasks measured a common trait.
To examine differences in the discrimination () and difficulty
(P) parameters across items sizes and across blocks for each
of the four tasks, five models were conducted in this study for
each of the four complex span tasks (a total of 20 models): a)
Baseline Model: a model in which both types of parameters
were constrained across both item size and blocks; b) Model
1: a model with free difficulty parameters across item size; c)
Model 2: a model with free discrimination parameters across
item size; d) Model 3: a model with free difficulty parameters
across blocks; and e) Model 4: a model with free discrimination
parameters across blocks.

The purpose of the five models was to compare the base-
line model to the models with free parameters to examine
whether there was a significant difference between the free
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Table 1 Descriptive statistics by samples and tasks

Sample N Mean SD Skew Kurtosis Correlation Split-half

reliability
Symmetry span 1 567 26.68 9.06 -0.44 -0.49 0.87
Operation span 567 54.31 15.51 -0.90 0.22 0.54 0.88
Rotation span 2 261 27.52 7.64 -0.74 0.31 0.80
Reading span 261 56.69 11.46 -0.73 0.12 0.37 0.79

models and the baseline models. This approach allowed us
to answer four questions for each complex span task:

(1) Does item difficulty change as a function of item size?
A change in item difficulty as a function of item size
would indicate that the difficulty of the items is due to
how long that item is, providing information regarding
whether short items are too easy or long items are too
difficult.

(2) Does item discrimination change as a function of item
size? A change in item discrimination as a function of
item size would indicate that the ability to differentiate
among subjects’ ability varies based on the size of the
item. This could indicate whether or not short items are
adequate indicators of subjects’ ability.

(3) Does item difficulty change as a function of block? A
change in item difficulty as a function of block would
indicate that the difficulty of the items is due to the
time point wherein the subjects are presented the stim-
uli (i.e., in earlier vs. later blocks), indicating whether
earlier blocks elicit more accurate responses compared
to later blocks.

(4) Does item discrimination change as a function of
block? A change in item discrimination as a function
of block would indicate that the ability to differentiate
among subjects’ ability varies based on the time point
wherein the subjects are presented the stimuli (i.e., in
earlier vs. later blocks). This could provide informa-
tion regarding whether later blocks are more adequate
indicators of subjects’ ability.

As mentioned, partial credit load (PCL) scoring was used
for all the tasks, therefore items were allowed to take on a
range of scores, not just 0 and 1. We also assumed that items
with a small item size would have a lower item discrimina-
tion parameter than items with larger item size. Therefore,
generalized partial credit models (GPCM; Muraki, 1992)
were used to estimate the IRT analyses in the current study.
As a polytomous model, GPCM estimates one item thresh-
old parameter for each response category in an item, and also
assumes varying item discrimination across items instead of
assuming a unitary reliability (reflected as a constant dis-
crimination parameter of 1 across all items). The item

threshold parameter is defined as the trait level in which one
has an equal probability of choosing the kth response cate-
gory over the k-1th category in an item. In other words,
when choosing between the kth and the k-1 category, sub-
jects with trait levels higher than that threshold are more
likely to approach the kth, while subjects with trait levels
lower than that threshold are more likely to approach the
k-1th. Therefore, for an item of size p (with p+1 response
categories, from 0 to p), GPCM estimates p item threshold
parameters (from d, for item scores 0 and 1 to d,, ; for item
scores p-1 and p) and 1 item discrimination parameter. All
GPCM models in the current study applied the onefold item
parameterization (see Chalmers, 2012) and therefore, the
overall difficulty parameter (also known as item location
parameter; Muraki, 1992) for each item was calculated man-
ually. Following Muraki (1992), the item location parameter
was defined as the average of all item threshold parameters
for a specific item (e.g., fpo; an item with item size p, its item

location parameter f :% ).

In general, holding all other item characteristics constant
(e.g., item size, item discrimination «), higher item diffi-
culty for an item in block A compared to block B means
that subjects need to have higher trait ability to respond
correctly to the same item in block A than in block B.
Individual item sizes in different blocks were considered
independent items to examine the differences in item diffi-
culty estimates for each item size in each task. Ability level
was specified as N(0,1), indicating that a subject’s ability
level followed a normal distribution with a mean of 0 and
SD of 1. All item response analyses were conducted using
the MIRT package (Chalmers, 2012) in R (Team, 2020).
Estimation was conducted using maximum likelihood.

Results

Descriptive statistics

Descriptive statistics and correlations are summarized in
Table 1. Operation span and symmetry span data were col-

lected from one sample and reading span and rotation span
data were collected from a different sample (see Method).
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Pearson correlations for all tasks in both samples are also
reported. As shown in Table 1, all data were univariate nor-
mal and the correlations between tasks for each sample were
moderate. However, the correlations for the complex spans
for Sample 2 were lower than that of the complex spans for
Sample 1.

In the current analysis, all IRT models assumed scale uni-
dimensionality (i.e., items within a given task must meas-
ure a single trait). To test for the assumption, we conducted
four series (one for each task) of exploratory factor analyses
and parallel analyses on the item-level data using weighted
least square estimation and oblimin rotation. The results
from scree plots, parallel analyses, and EFAs with differ-
ent numbers of factors indicated that a one-factor solution
was sufficiently adequate for all four tasks and therefore the
assumption was met?.

Model fitting

To examine differences in the discrimination («) and dif-
ficulty (ff) parameters across items sizes and across blocks
for each of the four tasks, five models were estimated. For
each of the four complex span tasks, the best model among
the five levels of constraints was selected. To choose the
best model for each task, we observed model comparison
results from log likelihood ratio tests, along with evidence
from AIC and BIC parameters. The models were compared
in a nested manner such that each model was compared to
their alternative with the previous level of constraints (e.g.,
Model 1 to Baseline, Model 2 to Model 1, etc.). Thus, any
significant difference in the likelihood ratio test indicates
the rejection of the current level of constraints and therefore
retention of the previous model. The model with the best fit
should also have the lowest AIC and BIC parameters among
all alternatives. Two model fit indices (CFI and RMSEA)
are also reported based on the M?* statistic (Cai & Hansen,
2013; Chalmers, 2012). Currently, there are no specific “best
practices” for these fit indices, but existing literature indi-
cates that a potentially stricter set of cutoff values may be
warranted (e.g., Maydeu-Olivares & Joes, 2006; Cai, Chung,
& Lee, 2021). Given the exploratory nature of the analysis,
we did not specify arbitrary cut-offs for these two fit indi-
ces. For the selected model, item fits were investigated by
generalized S-X? item-fit index with a cut-off of p = .05
(Kang & Chen, 2008; Orlando & Thissen, 2003). Results of

2 For symmetry, reading, and rotation spans, parallel analyses sug-
gested one-factor solutions; for operation span, parallel analysis
suggested a two-factor solution, however the second-factor solution
accounted for only 4% more of the variance than the one-factor solu-
tion. For scree plots, the criterion used to select number of factors
was eigenvalue > 1. For parallel analyses, the criterion was number
of retained factors based on simulation.
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item parameters (item discrimination a, item thresholds b,
at display-level, and overall item difficulty/location /) have
been summarized for the selected model of each task. In
addition, item characteristic curves for each selected model
are presented in Figs. 2-5.

As a reminder, the difficulty (i.e., location) estimates
(Ps) presented in the results are calculated by averaging the
display-level threshold parameters for each item and are all
on a scale with mean 0. Therefore, a difficulty estimate of
f =1 indicates that, in general, for an item with item size
P, a given subject with ability level of 1 standard deviation
above the mean has an expected score of 0.5p for that item.
Similarly, a # = —1 estimate indicates that, in general, for
an item with item size p, a given subject with ability level
of 1 standard deviation below the average has an expected
score of 0.5p for that item. Thus, items that have difficulty
estimates close to 0 (around the mean) are conceptually con-
sidered to be items with average difficulty, as a person with
average ability would obtain 50% of the total scores on those
items, while items that have estimates above or below O can
be considered “hard” or “easy”, respectively.

Symmetry span (N = 585)

For symmetry span, the best fitting model was Model 2:
discrimination (@) constrained by block and freed by item
size, and difficulty (f) constrained by block and freed by
item size. CFI and RMSEA parameters in all four mod-
els were within acceptable range, except for the base-
line model. Model fits were not significantly improved
by freeing difficulty parameters by block and, thus, the
more parsimonious Model 2 was retained. This indicates
that for symmetry span, @ and § are different across items
with different sizes but not across items with same sizes
but different blocks (see Table 2a). In other words, items
become more difficult and more discriminant as item size
increases. In addition, items are appropriately difficult at
size 5 (see Table 2b).

Operation span (N = 585)

For operation span, the best fitting model was Model 3: dis-
crimination (a) constrained by block and free by item size
and difficulty (p) freed by block and freed by item size. This
indicates that for operation span, a and § are different across
items with different sizes. Interestingly, § are also different
across blocks (for the same size), while a parameters are not
significantly different for items with the same size across
blocks (see Table 3a). In other words, as it is expected, items
become more difficult and more discriminant as item size
increases. However, items of a given size are also more dif-
ficult in block 1 compared to block 3 (see Table 3c). In addi-
tion, in all models except for the baseline model, RMSEA
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Fig.2 Item characteristic curves for all tasks items in the retained model (/eft) and example of item characteristic curve (i.e., Block 2, set size 5

and 7, respectively) (right)

indices were within acceptable range, but not CFI indices,
especially for Models 1 and 2. Overall, the model fit indices
of the selected model were within acceptable range.

Rotation span (N =261)

For rotation span, the best fitting model was Model 2:
discrimination (@) constrained by block and freed by item

size and difficulty (f) constrained by block and freed
by item size. This indicates that just like for symmetry
span, for rotation span, a and f are different across items
with different sizes but not across items with same sizes
but different blocks (see Table 4a). Specifically, items
become more difficult and more discriminant as item
size increases. However, just like it was the case for sym-
metry span, items in rotation span become appropriately
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Table 2 Model statistics for complex span tasks

Task Sample N Model AIC BIC -2 log-likelihood Ax2 Adf  p RMSEA CFI
Baseline 16952.89 16978.93 —8470.45 .110 325
1 15668.81 15733.92 —7819.41 1302.08 9 < 0.001 0 1
Symmetry 567 2 15651.04 15729.17 —-17807.52 23.77 3 < 0.001 .006 998
3 15673.35 15873.01 —7790.68 33.69 28 0.211 .026 982
4 15685.62 15920.00 —7788.81 3.73 8 0.881 .023 .990
Baseline 22722.44 22757.16 —11353.22 117 0
1 20421.32 20534.17 —-10184.66 2337.11 18 < 0.001 .058 231
Operation 567 2 20385.42 20515.63 -10162.71 43.90 4 < 0.001 .058 259
3 20348.38 20695.60 -10094.19 137.05 50 < 0.001 .046 .790
4 20355.82 20746.45 —10087.91 12.55 10 0.25 .039 .886
Baseline 7717.33 7738.71 —3852.66 .159 0
1 6792.15 6845.62 —-3381.07 943.18 9 < 0.001 .022 922
Rotation 261 2 6774.53 6838.69 —-3369.26 23.62 3 < 0.001 .024 913
3 6797.63 6961.60 —-3352.82 32.89 28 0.24 .030 923
4 6810.94 7003.43 —-3351.47 2.69 8 0.952 .000 1
Baseline 10582.21 10610.72 —-5283.10 .083 0
1 9667.87 9760.54 —-4807.93 950.34 18 < 0.001 .015 814
Reading 261 2 9662.28 9769.22 —-4801.14 13.58 4 0.009 011 910
3 9711.82 9996.98 -4775.91 50.47 50 0.455 .020 .857
4 9723.49 10044.30 —-4771.74 8.33 10 0.597 .010 972
Notes. Bold indicates the model
difficult at size 5 (see Table 4b). CFI and RMSEA Summary of results

parameters in all four models were within acceptable
range, except for the baseline model.

Reading span (N =261)

For reading span, the best fitting model was Model 2:
discrimination (a) constrained by block and free by item
size and difficulty (f) constrained by block and free by
item size. This indicates that in reading span, « and f are
different across items with different sizes but not across
items with same sizes but different blocks (see Table 5a).
This indicates that, unlike in operation span, there was not
a significant difference in items across blocks. However,
by examining the item parameters, it can be observed that
there is a nonsignificant decreasing trend by block for dif-
ficulty estimates. While this change is not significant in
this study, it suggests that reading span could follow the
same pattern as operation span (Table 5c) to a lesser extent.
Overall, in reading span, items get more difficult as item
size increases, nevertheless, all items seem to be generally
too easy (see Table 5b). CFI and RMSEA parameters in all
four models were within acceptable range, except for the
baseline model. In addition, the selected model presented
improved CFI compared to Model 1, supporting model
comparison.
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Overall, the results present convergent patterns in psycho-
metric properties across all four tasks. That is, item discrimi-
nation and difficulty parameters in all four tasks changed as
a function of item size. Specifically, as expected, all four
tasks presented a trend of increasing difficulty by item size,
such that longer items were more difficult than shorter items.
In addition, the results show that regardless of the sample
or the task, most task items were psychometrically “easy”,
with a majority of difficulty parameters being negative. This
suggests that most subjects of below average ability would
still be able to respond correctly to most items in the tasks,
as it was also suggested by Draheim et al. (2018) and Oswald
etal. (2015).

The results of these tasks were also divergent in certain
aspects. First, the verbal complex span tasks presented a
trend of decreasing difficulty across blocks that was sig-
nificantly different for operation span. That is, subjects
showed a tendency to answer on average more accurately
to items of the same size in block 3 than block 1. Second,
the visuospatial span tasks did not present such a pattern

3 The estimated abilities for operation span and symmetry span were
correlated at r = .54 and the estimated abilities for reading span and
rotation span were correlated at r = .36.
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Table 3 Model fitting parameter for best (chosen) model both constrained and freed by block across all complex span tasks

Task Best model
2
2
Symmetry
Task Best model
3
3
Operation
Task Best model
2
2
Rotation

Type
Constrained

Freed

Type
Constrained

Freed

Type
Constrained

Freed

Item size
2

3
4
5
2

Item size

W 9 N LW

Item size
2

[\ R e

Block

W N = W N = W N = W~

Block

W N = W N = W= W = W =

Block

N = W N = W N =

o

0.90
0.78
0.70
0.56
0.89

0.78

0.69

0.56

0.76
0.65
0.57
0.47
0.44
0.76

0.65

0.57

0.47

0.44

0.82
0.82
0.56
0.42
0.84

0.83

0.56

bl
-227
-1.82
-1.20
-0.25
-2.6
—-2.68
-1.67
-1.77
-2.14
-1.57
-1.03
-13
-1.26
-0.03
0.053
-0.76
bl
-1.58
-0.76
-0.55
-0.51
-0.13
—-1.36
-1.58
-1.89
-0.27
-1.26
—-0.84
-0.87
-0.25
-043
-0.20
—-0.88
-0.61
0.05
-0.32
-0.13
bl
-1.71
-1.87
-1.33
-0.60
-2.28
-138
-1.31
-1.57
-2.38
-1.78
-1.82
-1.6

b2

-2.09
-0.54
-0.32
-0.27
-1.94
-2.07
-2.26
—-0.44
-0.52
-0.67
-0.33
-0.49
-0.12
-0.25
-0.47
—-0.1
b2

-0.93
-0.75
-0.57
-0.52
-1.34
-0.98
-0.99
-0.78
-0.67
-0.67
-0.94
-0.65
—-0.44
-0.52
-0.45
-0.15
-1.01
-1.30
-1.03
- 1.69
b2

-3.35
-0.94
-0.73
-0.59
-3.54
-3.25
-3.12
-0.89
—-0.88
-1.03
-0.54
-0.69

b3

-1.38
-0.02
0.33

-1.38
-1.39
-1.34
-0.28
0.41
-0.18
0.49
0.09
0.42
b3
-3.37
-0.44
-1.14
—-0.89
-1.01
—-2.80
—-3.60
—-3.64
—-0.68
-0.37
—-0.18
-0.27
- 1.66
-1.69
-0.48
-1.31
-0.96
-1.08
-0.99
-0.92
b3

-1.98
0.09
0.81

-1.79
-23
-1.77
0.57
-0.34

b4

-0.82
0.84

-0.57
-1.09
-0.82
0.56
1.11
0.85
b4

-3.61
0.09

-0.85
-0.34

-3.13
-3.51
-4.15
-0.38
0.12
0.59
-0.18
-1.14
-1.14
-0.01
-0.34
-0.70
b4

-1.31
1.44

-1.51
-0.87

b5

-0.42

-0.13
-0.63
-05
b5

-3.77
0.27

-3.07
-3.99
-4.15
-0.20
0.42
0.54
0.10
0.08
-0.15
b5

0.13

b6 b7 B
-2.18
-125
-0.59
0.05
-225
-237
-1.97
-1.20
-135
~1.20
~0.55
~0.62
~0.59
0.13
0.03
~0.02
b6 b7 B
~1.96
~1.39
~1.19
~0.86
~0.46
—-171
~2.06
-2.10
- 119
~145
~1.52
-1.05
~124
~1.24
~0.57
-0.97
~1.01
~031

-2.64

.27 -1.7

-1.94
2.74
2.90
123 - 116
116 —179 -0.46
141 -201 -0.60
b6 b7 B
~253
~1.60
~0.82
0.24
~2091
~253
~221
142
~1.86
~1.53
~0.82
~0.88
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Table 3 (continued)

3
5 1 0.42
2
3
Task Best model  Type Itemsize Block «
2 Constrained 3 - 0.60
4 - 0.48
5 - 0.41
6 - 0.38
7 - 0.32
2 Freed 3 1 0.60
2
Reading 3
4 1 0.48
2
3
5 1 0.41
2
3
6 1 0.38
2
3
7 1 0.32
2
3

-055 -1.01 0.08 -1.6 -0.77
-072 -0.05 057 1.85  -0.04 0.32
-049 -1.04 15 123 -0.08 0.23
-057 -0.67 034 1.24 045 0.16
bl b2 b3 b4 b5 b6 b7 8
-209 -157 -3.86 -2.51
-275 -248 -049 -4.19 —248
-430 -232 -1.02 -0.55 -449 -2.54
-202 -151 -055 -1.57 006 -3.26 —1.48
-315 -054 -104 -090 000 137 -2838 -1.02
-366 -141 -3.99 -3.02
-4.14 -0.72 -4.10 -2.99
-209 -157 -3.86 -2.51
-195 -215 -042 -3.77 -2.07
-147 -274 -0.06 -4.17 -2.11
-275 -248 -049 -4.19 —248
-195 -045 -234 -049 -3.56 -1.76
-299 -145 -124 071 -448 -1.89
-430 -232 -102 -0.55 -449 -2.54
-030 -193 -061 -1.63 025 -2.61 -1.14
-211 -213 -097 -050 170 -4.01 -1.34
-202 -151 -055 -1.57 006 -3.26 -1.48
-180 -173 -122 -090 059 105 -149 -0.79
-031 -237 -111 008 -034 094 -203 -0.74
-315 -054 -1.04 -090 000 137 -288 -1.02

Notes. “b” = beta parameter averaged across size per block. Constrained = Model constrained by block; Freed = Model not constrained by

block.

Table 4 Additional analyses. Four-way ANOVAs

Task F (df1, df2) P Significant pairwise comparisons
Operation 36.96 (1.93, 1091.75) <.001 Block1-Block?2; Block1-Block3
Symmetry 1.33 (2, 1132) 0.265 None

Reading 5.24 (2, 520) 0.006 Block1-Block3; Block2-Block3
Rotation 1.53 (2, 520) 0.218 None

Note. The results of operation span data were adjusted due to the violation of sphericity assumption. Significance of the pairwise comparisons
were determined based on the adjusted p values using Bonferroni correction.

of decreasing difficulty. In fact, items in the visuospatial
tasks were largely stable across blocks regardless of the
stimuli. Third, in general, all four tasks were relatively
easy according to the difficulty parameters, suggesting
that on average subjects with below-average ability could
answer most items correctly. In addition, the patterns of
the difficulty parameters in the verbal compared to visuo-
spatial tasks were different. While the verbal tasks were
overall too “easy”, that is, they had overall low difficulty
estimates even in the longer item sizes, the visuospatial
tasks presented very low difficulty estimates in shorter
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item sizes and higher estimates in only the longest item
size (i.e., 5). These findings are discussed further below.
It is worth noting that some item response categories did
not present an ordered decline; for example, in symmetry
span, block 1 of set size 2 and block 1 of set size 3 (— 1.20
vs. — 1.35) or in reading span, block 2 of set size 7 and block
3 of set size 7 (— .74 vs. — 1.02). These instances could indi-
cate that for these tasks, a dichotomous model of IRT might
also be a valid approach to examining responses to complex
span tasks at the item level. However, in this study, task
scores were calculated using the partial-credit load method
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widely used to score complex span tasks (PCL; Conway
et al. 2005), which considers that tasks responses are poly-
tomous by design and that the range of response categories
are necessary to appreciate subtle individual differences in
task response. For this reason, a generalized partial credit
IRT model (GPCM) was used to examine the polytomous
responses to complex span tasks in this study. The lack of
ordered responses in some of the tasks’ blocks suggests that
some of these responses might be redundant, nevertheless,
given the theoretical framework in which the tasks are con-
sidered, we estimated that a polytomous IRT approach was
the most adequate solution in this case.

Additional results

Based on the results obtained through the IRT approach, one
of the key insights was that difficulty in the verbal complex
span tasks presented a decreasing trend in later blocks com-
pared to earlier blocks, however this was only a significant
effect for the operation span task. To further investigate this
result, we decided to conduct traditional analyses to exam-
ine the possible nature of this trend. To this end, we con-
ducted four four-way ANOVASs comparing each of the four
blocks in each task. The results are presented in Table 4.
The results of the ANOVAs indicated that both verbal tasks
showed practice effects as evidenced by significant differ-
ences in performance among Blocks 1 and 2 and Blocks 1
and 3 (operation span) and Blocks 1 and 3 and Blocks 2 and
3 (reading span), such that scores in latter blocks were sig-
nificantly higher than scores in former blocks (see Table 4).
This was not the case for symmetry and rotation span tasks.
Overall, these additional analyses provide support for the
view that the decreasing difficulty trends found for verbal
complex span tasks using IRT are likely the result of practice
effects.

Discussion

The goal of this study was to explore whether there are rel-
evant differences in responses at the item level in verbal
compared to visuospatial complex span tasks to understand
if findings at the item level support research showing that
variance in complex span tasks represents a domain-general
WM ability.

The current findings suggest that examining complex
span responses through IRT can explain specific aspects
of complex span tasks that have not been examined before.
Specifically, the results of the study showed that there
were discrepancies in the item-level responses across the
complex span tasks examined in this study. First, all tasks
reflected relatively low difficulty when it comes to the

difficulty parameter estimates. However, this finding was
not homogenous across the domain-specificity of the tasks.
Specifically, verbal tasks seemed to be overall easier com-
pared to spatial tasks (even for longer items), presenting
lower difficulty estimates than the longer items of the spa-
tial tasks. For example, an item of set size 7 (b = — .60) for
operation span is about as difficult as an item of set size 5
(b =-.63) for rotation span. This suggests that the stimuli
displayed in the verbal tasks might elicit different response
processes compared to the stimuli displayed in the spatial
tasks, though this necessitates further investigation.

Regarding the visuospatial tasks, they also presented
low difficulty estimates, however this was true for all item
sizes except for the longest item size (i.e., item size 5).
In addition, middle-size items in the visuospatial tasks
(i.e., those items in the middle of the set) did not seem
to provide much information about ability differentiation
based on the difficulty estimates. In other words, items in
the middle of a set did not differentiate across subjects
accurately.

Finally, in terms of difficulty, there was a trend for items
presented in a later block of the verbal tasks to have lower
difficulty scores than those in earlier blocks, especially for
the operation span task. That is, although difficulty seemed
to generally increase as a function of item size (i.e., longer
items were more difficult than shorter items) across all tasks,
difficulty tended to decrease by block (i.e., items in later
blocks were less difficult than items in earlier blocks) in the
verbal tasks. This suggests that, despite inducing proactive
interference, at the item-level, subjects may be responding
more accurately to items of a certain size after those items
have been presented more times (compared to fewer times)
in verbal tasks, perhaps suggesting practice effects. Alter-
natively, this pattern could also suggest that even though
proactive interference is operating in complex span tasks,
verbal tasks might be more prone to the use of verbal stra-
tegic processes, and these processes might become more
sophisticated across the duration of the tasks, perhaps due
to rehearsal strategies.

One implication of these findings is that verbal tasks
might elicit different types of responses at the item-level
compared to spatial tasks, perhaps indicating that verbal
complex span tasks can facilitate the use of strategies that
can in turn help complete the tasks more efficiently. Recall-
ing letters (i.e., reading span), for example, might be more
prone to strategy use or to relying on previous knowledge
than recalling the direction of arrows (i.e., rotation span),
as it has been previously suggested (Turley-Ames & Whit-
field, 2003). Similarly, completing multiple blocks of this
task might facilitate practice of the stimuli, thus reducing
the need to engage domain-general working memory. This
would indicate that despite their contribution to general WM
(Kane et al., 2004), responses to verbal tasks might be more
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prone to reliance on mechanisms other than domain-general
processes compared to visuospatial tasks.

Another issue to consider is why the reading span task
only showed a nonsignificant trend compared to operation
span in the IRT analyses. It is possible that there are inher-
ent differences between reading and operation span items
that are largely based on the quality of their stimuli, such
as the type of processing component used. Similarly, there
might be factors regarding the characteristics of the sam-
ples tested that could explain this difference. In fact, while
this effect was not significant using the IRT approach, a
significant difference was found using classical test theory
analyses. Specifically, the results of ANOVAs showed that
performance in latter blocks was significantly higher than
performance in former blocks for both verbal tasks, but not
for the visuospatial tasks. In addition, it should be noted that
the reading and operation span data used for the IRT analy-
ses come from different samples. While both sample sizes
are appropriate for the analyses, the sizes differ from each
other, which could potentially increase the variability in task
responses differently. Further, the reading span data comes
from a sample of mostly graduate students of Claremont
Graduate University and members of the community of the
highly diverse Southern California area of the San Gabriel
Valley. Because of this, the reading span data come from a
generally older and diverse population in terms education,
SES, and race. On the other hand, the operation span data
come from a sample of largely undergraduate students from
the highly selective Georgia Institute of Technology. The
difference in the composition of the samples could partly
influence the nonsignificant trend observed in reading span
in the IRT analyses; in fact, the correlation between the
tasks in each sample was lower for the rotation and reading
tasks (.37) than for the operation and symmetry tasks (.54).
Further, the reading span sample presented a significantly
higher complex span score than the operation span sample
(t (665.50) = — 2.47, p = .014), but there was no differ-
ence between samples in terms of visuospatial tasks scores
(1(591.32) = 1.37, p = .170).*

A wider implication of these findings is the extent to
which they can provide information for psychometric
research and application. Regarding psychometrics, the
executive attention theory of WM posits that domain-gen-
eral attentional resources drive individual differences in WM
(Engle et al., 1992; Engle et al., 1990; Kane & Engle, 2000).
Thus, higher levels of attentional control are predictive of
higher levels of WM and vice versa. In line with this, com-
plex span tasks are thought to capture attentional control

* However, because the complex span scores obtained from each
sample came from different complex span tasks, we suggest that this
difference be considered with reservations.

@ Springer

abilities in addition to domain-specific abilities. According
to executive attention theorists, the predictive validity of
complex span tasks is driven mainly (if not solely) by the
domain-general attentional component of WM. However,
the current findings suggest that performance on complex
span tasks, especially verbal, might reflect a higher involve-
ment of domain-specific general processes than previously
thought. This is consistent with findings by Draheim et al.
(2018) and Mackintosh and Benett (2003), among others.
Not only do these findings challenge executive attention
theory, but they also speak to other theories of working
memory that have a domain-general emphasis. For exam-
ple, Oberauer’s theory of working memory (which is an
extension of Cowan’s embedded process model of WM)
posits that working memory is an ability composed of active
long-term memory, a direct-access region, and a focus of
attention (Oberauer, 2009). The focus of attention serves as
the domain-general region of working memory that is bot-
tlenecked by binding processes and response-selection pro-
cesses. The findings reported here would suggest that con-
sidering domain-specific processes to a greater degree would
be important in Oberauer and Cowan’s theory of working
memory (Cowan, 1988; Cowan, 2001; Cowan, 2017) as well.
These findings could indicate that examining purely
domain-general WM without considering domain-specificity
might not be possible when using complex span tasks. This
has implications for research that administers complex span
tasks to measure WMC as a secondary measure. For exam-
ple, studies that concern linguistic outcomes or bilingual
subjects might not want to use the operation span as a single
measure of WMC. Similarly, research that examines mental
rotation performance should not solely use the rotation span.
One reason why we found differences at the item-level for
each domain might be related to the sample tested in this
study. If the WMC of the sample is highly similar, it is more
likely to find differences in the domain-specific component
of the tasks. This is because the lower the probability of
failing the processing component of the tasks that requires
domain-general processes, the more likely it is that indi-
vidual differences in specific processes will matter to obtain
a correct response in the tests. Theoretical accounts (Kovacs
& Conway, 2016) have proposed that this could be the cause
of the phenomenon of factor differentiation also known as
the Law of Diminishing Returns (Spearman, 1927). Since
the samples tested in this study were part of a selected group
of students from higher education institutions and were more
likely to resemble each other in terms of domain-general
WM than in individual differences in specific processes, this
could be part of the reason behind our results. Further, we
have discussed that complex span tasks have been largely
shown to load onto a domain-general WM factor, and this
WM factor is usually more highly related to fluid reasoning
than simple tasks. This relationship is thought to be due to
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the extent to which general processes (e.g., executive func-
tioning, attention) are tapped by complex span tasks (Kovacs
& Conway, 2016), suggesting that all complex span tasks
tap central executive processes involved in WM, regard-
less of domain. However, as mentioned above, a WM factor
based on verbal complex tasks is not as strong a predictor
of fluid reasoning as a factor extracted from spatial complex
span tasks (Kane et al., 2004). Consequently, as opposed to
previously thought, differences in specific processes could
indicate that the relevance of a specific process for task
performance might vary based on the overlap of multiple
factors, such as previous knowledge or practice, instead of
assuming that all specific domains require the same type/
amount of processes to be engaged. This idea should be fur-
ther explored.

Finally, the current findings provide implications for
selection among current measures of WM. Based on these
findings, two suggestions could be made regarding the use
of complex span tasks. First, if only one task is employed
to measure WMC, it is advisable to give preference to visu-
ospatial span tasks compared to verbal tasks. This is espe-
cially relevant given that a large number of studies have used
only the operation span as a measure of general WM (Foster
et al., 2015). Our findings and others’ (i.e., Draheim et al.,
2018) show that a WM span score based solely on responses
to verbal tasks, and especially, the operation span, could be
inflating subjects’ true scores. This should be carefully con-
sidered by researchers whose samples include individuals
with higher-than-average WMC. Second, our results showed
that items that are not too short or not too long (e.g., 3) are
generally not sufficiently difficult, providing less information
about subjects’ ability. This suggests that it might be advis-
able to replace these items for a larger number of short and
long items (for example, by presenting more blocks of each).
This is consistent with solutions proposed by researchers
that observed domain-specific differences in responses to
complex span tasks. For example, Draheim et al. (2018)
and Oswald et al. (2015) have proposed modifications to
complex span tasks, such as eliminating smaller set sizes or
incorporating longer set sizes. Given that researchers tend
to use only one complex span task to assess WM, another
solution could be to include more blocks of shorter and
longer set sizes when using visuospatial tasks. This could
help increase ability differentiation by detecting responses
that are the result of lack of motivation or fatigue (i.e., incor-
rect responses to the shorter set sizes) and reducing time
spent on middle-size items that do not provide significant
information about the subjects’ ability. Our results suggest
that this approach might help better capture general abil-
ity when using visuospatial tasks while maximizing time
resources and minimizing fatigue. Instead, for verbal tasks,
shorter items provide poorer discrimination, especially in
later blocks. This could be remedied by reducing the number

of blocks or reducing the number of short-sized items in
verbal tasks. This is an important consideration for both
research and practice.

One limitation of this study is the inability to examine
item-level responses to the processing component of the
complex span tasks, such as the arithmetic problems of the
operation span and the multidirectional arrows of the rota-
tion span. The nature of these stimuli might differ in dif-
ficulty; indicating the syntactic validity of a sentence might
be more prone to strategies or relying on previous knowledge
than remembering the positions and size of arrows in space.
This could perhaps contribute to the subjects’ overall WM
span scores. While these data were not available for the cur-
rent samples, future research examining the impact of the
domain-specificity of processing stimuli using IRT would be
valuable for the improvement of complex span tasks. In addi-
tion, it should be noted that this study was conducted among
two highly selective samples; both groups were undergradu-
ate and graduate students of higher education institutions
in the US, and both were formed largely by young adults.
Therefore, it is possible that the results reported in this study
only apply to average-to-high performing samples. As sug-
gested above, a high homogeneous WMC in the samples
could partly explain why we observed stronger differences
in domain specificity. This could indicate that for high per-
forming samples, WMC assessed by complex span tasks
might benefit from the use of visuospatial tasks with fewer
short items to discriminate individual abilities adequately.
However, Draheim et al. (2018, Experiment 2) recruited
subjects from one of the same subject pools, the Georgia
Institute of Technology, which included average as well as
above-average individuals and found that modified complex
span tasks designed to discriminate above-average ability
individuals were more discriminating for participants in
the higher end of the working memory capacity range (i.e.,
especially those about .5 SDs above the mean), indicating
that regular complex span tasks are not necessarily unchal-
lenging for average and high performing individuals. Still,
it is likely that the samples in this study include average to
above-average subjects and fewer below-average subjects. In
other samples, including clinical samples or older adults, the
results and the proposed solutions might not be applicable
and further research should examine whether different types
of complex span tasks tend to elicit different responses at the
item level in different populations, as well as what remedies
should be considered.

In conclusion, the current study found that, while com-
plex span tasks are strong measures of domain-general WM,
there seem to exist differences at the item-level in terms of
domain-specificity that have been understudied before. Our
findings indicate that verbal complex tasks tend to be less
difficult for most average-ability subjects to complete suc-
cessfully, and they could be more prone to practice effects

@ Springer
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and strategy building compared to visuospatial tasks. Over-
all, the results of our study suggest that the role of domain-
specific processes in complex span tasks should be exam-
ined more carefully and task selection should be based on
the research area and variables of interest to avoid inflated
WMC scores.

Appendix

Term Definition Example

Task A computerized test The operation span
consisting of multiple
items.

Item List of to-be-remem- Item (size 3):

bered storage stimuli
and processing
stimuli. There are

12 to 15 items total
(depending on task
domain) presented
across three blocks.

Is 3+ (2*3) =9
correct? | G |
Is (5%4) 2 =8
correct? IR | Is
9 — (4*2) =1 cor-
rect? | S

The to-be-remembered G
set of stimuli in an
item. Size can vary
between 2-5 and 3-7.

The set of stimuli that

Storage component

Processing compo- Is 3+ (2¥3) =9

nent requires a judgement correct?

in an item. Size can
vary between 2-5 and
3-7.

Block A group of items that ~ Block:
includes one item of  Item 1 (size 2)
each possible size. Item 2 (size 3)
Complex span tasks  Item 3 (size 4)
have 3 blocks each Item 4 (size 5)
with 2-5 (visuospa-
tial) and 3-7 (verbal)
item sizes

List Series of (storage or List of letter stimuli:
processing) stimuliin G, R, S
an item

Size Length of an item Item of size 2:

Is 3+ (2*3) =9 cor-
rect? | G| Is (5%4) /2
=8 correct? IR
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